
The Complete

FreeBSD
Documentation from the Source

Greg Lehey

4th Edition

Covers Version 5.0

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 111

7
The tools of the

trade

In this chapter:
• Users and groups
• Gaining access
• The KDE desktop
• The fvwm2 window

manager
• Changing the X

display
• Getting a shell
• Files and file names
• Differences from

Microsoft
• The Emacs editor
• Stopping the system

In this chapter:
• Users and groups
• Gaining access
• The KDE desktop
• The fvwm2 window

manager
• Changing the X

display
• Getting a shell
• Files and file names
• Differences from

Microsoft
• The Emacs editor
• Stopping the system

So now you have installed FreeBSD, and it successfully boots from the hard disk. If
you’re new to FreeBSD, your first encounter with it can be rather puzzling. You probably
didn’t expect to see the same things you know from other platforms, but you might not
have expected what you see either:

FreeBSD (freebie.example.org) (ttyv0)

login:

If you have installedxdm, you’ll at least get a graphical display, but it still asks you to log
in and provide a password. Where do you go from here?

There isn’t space in this book to explain everything there is about working with FreeBSD,
but in the following few chapters I’d like to make the transition easier for people who
have prior experience with Microsoft platforms or with other flavours of UNIX. You can
find a lot more information about these topics inUNIX for the Impatient, by Paul W.
Abrahams and Bruce R. Larson,UNIX Power Tools, by Jerry Peek, Tim O’Reilly, and
Mike Loukides, andUNIX System Administration Handbook, by Evi Nemeth, Garth
Snyder, Scott Seebass, and Trent R. Hein. The third edition of this book also covers
FreeBSD Release 3.2. See Appendix A,Bibliography, for more information.

If you’ve come from Microsoft, you will notice a large number of differences between
UNIX and Microsoft, but in fact the two systems have more in common than meets the
eye. Indeed, back in the mid-80s, one of the stated goals of MS-DOS 2.0 was to make it
more UNIX-like. You be the judge of how successful that attempt was, but if you know

unixref.mm,v v4.16 (2003/04/02 06:41:29) 111

112 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (../tools/tmac.Mn), page 112

the MS-DOS command-line interface, you’ll notice some similarities in the following
sections.

In this chapter, we’ll look at FreeBSD from the perspective of somebody with computer
experience, but with no UNIX background. If youdo have a UNIX background, you may
still find it interesting.

If you’re coming from a Microsoft platform, you’ll be used to doing just about everything
with a graphical interface. In this book I recommend that you use X and possibly a
desktop, but the way you use it is still very different. FreeBSD, like other UNIX-like
systems, places much greater emphasis on the use of text. This may seem primitive, but
in fact the opposite is true. It’s easier to point and click than to type, but you can express
yourself much more accurately and often more quickly with a text interface.

As a result, the two most important tools you will use with FreeBSD are theshell and the
editor. Use the shell to issue direct commands to the system, and the editor to prepare
texts. We’ll look at these issues in more detail in this chapter. In Chapter 8,Taking
control, we’ll look at other aspects of the system. First, though, we need to get access to
the system.

Users and groups
Probably the biggest difference between most PC operating systems and FreeBSD also
takes the longest to get used to: FreeBSD is a multi-user, multi-tasking system. This
means that many people can use the system at once, and each can do several things at the
same time. You may think ‘‘Why would I want to do that?.’’ Once you’ve got used to
this idea, though, you’ll never want to do without it again. If you use the X Window
System, you’ll find that all windows can be active at the same time—you don’t hav e to
select them. You can monitor some activity in the background in another window while
writing a letter, testing a program, or playing a game.

Before you can access a FreeBSD system, you must be registered as auser. The
registration defines a number of parameters:

• A user name, also often calleduser ID. This is a name that you use to identify
yourself to the system.

• A password, a security device to ensure that other people don’t abuse your user ID.
To log in, you need to specify both your user ID and the correct password. When you
type in the password, nothing appears on the screen, so that people looking over your
shoulder can’t read it.

It might seem strange to go to such security measures on a system that you alone use.
The incidence of Internet-related security problems in the last few years has shown
that it’s not strange at all, it’s just common sense. Microsoft systems are still subject
to a never-ending series of security exploits. FreeBSD systems are not.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Users and groups 113

19 June 2003, 14:24:54 The Complete FreeBSD (../tools/tmac.Mn), page 113

• A shell, a program that reads in your commands and executes them. MS-DOS uses
the programCOMMAND.COMto perform this function. UNIX has a large choice of
shells: the traditional UNIX shells are the Bourne shellsh and the C shellcsh, but
FreeBSD also suppliesbash, tcsh, zsh and others. I personally use thebash shell,
and the examples in this book are based on it.

• A home directory. The system can have multiple users, so each one needs a separate
directory in which to store his private files. Typically, users have a directory
/home/username, whereusername is the name they use to log in. When you log in
to the system, the shell sets the current directory to your home directory. In it, you
can do what you want, and normally it is protected from access by other users. Many
shells, including thebash shell used in these examples, use the special notation˜
(tilde) to represent the name of the home directory.

• A groupnumber. UNIX collects users intogroupswho have specific common access
permissions. When you add a user, you need to make him a member of a specific
group, which is entered in the password information. Your group number indirectly
helps determine what you are allowed to do in the system. As we’ll see on page 181,
your user and group determine what access you have to the system. You can belong
to more than one group.

Group numbers generally have names associated with them. The group names and
numbers are stored in the file/etc/group. In addition, this file may contain user IDs
of users who belong to another group, but who are allowed to belong to this group as
well.

If you find the concept of groups confusing, don’t worry about them. You can get by
quite happily without using them at all. You’ll just see references to them when we
come to discuss file permissions. For further information, look at the man page for
group(5).

By the time you get here, you should have defined a user name, as recommended on page
94. If you haven’t, you’ll have to log in asroot and create one as described there.

Gaining access
Once you have a user name, you can log in to the system. Already you have a choice:
FreeBSD offers bothvirtual terminalsand the X Window System. The former displays
plain text on the monitor, whereas the latter uses the system’s graphics capabilities. Once
running, you can switch from one to the other, but you have the choice of which interface
you use first. If you don’t do anything, you get a virtual terminal. If you runxdm, you
get X.

It’s still relatively uncommon to usexdm, and in many instances you may not want X at
all, for example if you’re running the system as a server. As a result, we’ll look at the
‘‘conventional’’ login first.

If you’re logging in on a virtual terminal, you’ll see something like this:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

114 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (../tools/tmac.Mn), page 114

login: grog
Password: password doesn’t show on the screen
Last login: Fri Apr 11 16:30:04 from canberra
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD 5.0-RELEASE (FREEBIE) #0: Tue Dec 31 19:08:24 CST 2002

Welcome to FreeBSD!

You have mail.
erase ˆH, kill ˆU, intr ˆC, status ˆT
Niklaus Wirth has lamented that, whereas Europeans pronounce his name
correctly (Ni-klows Virt), Americans invariably mangle it into
(Nick-les Worth). Which is to say that Europeans call him by name, but
Americans call him by value.
=== grog@freebie (/dev/ttyv0) ˜ 1 ->

There’s a lot of stuff here. It’s worth looking at it in more detail:

• The program that asks you to log in on a terminal window is calledgetty. It reads in
your user ID and starts a program calledlogin and passes the user ID to it.

• login asks for the password and checks your user ID.

• If the user ID and password are correct,login starts your designated shell.

• While starting up, the shell looks at a number of files. See the man page for your
particular shell for details of what they are for. In this case, though, we can see the
results: one file contains the time you last logged in, another one contains the
Message of the day(/etc/motd), and a third one informs you that you have mail. The
shell prints out the message of the day verbatim—in this case, it contains information
about the name of the kernel and a welcome message. The shell also prints
information on last login time (in this case, from a remote system) and whether you
have mail.

• The line ‘‘erase ˆH, kill ˆU, intr ˆC, status ˆT’’ looks strange. It’s
telling you the current editing control characters. We’ll look at these on page 131.
At this point, the shell changes the current directory to yourhome directory. There is
no output on the screen to indicate this.

• The shell runs thefortune program, which prints out a random quotation from a
database of ‘‘fortune cookies.’’ In this case, we get a message about Niklaus Wirth,
the inventor of the Pascal programming language.

• Finally, the last line is a prompt, the information that tells you that the shell is ready
for input.

The prompt illustrates a number of things about the UNIX environment. By default,sh
and friends prompt with a$, andcsh and friends prompt with a%. You can change it to
just about anything you want with the UNIX shells. You don’t hav e to like my particular
version, but it’s worth understanding what it’s trying to say.

The first part,===, is just to make it easier to find in a large list on an X display. An
xterm window on a high resolution X display can contain up to 120 lines, and searching
for command prompts can be non-trivial.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Gaining access 115

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 115

Next,grog@freebie is my user ID and the name of system on which I am working, in
the RFC 2822 format used for mail IDs. Multiple systems and multiple users can all be
present on a single X display. This way, I can figure out which user I am and what
system I am running on.

/dev/ttyv0is the name of the terminal device. This can sometimes be useful.

˜ is the name of the home directory. Most shells, but not all of them, support this
symbolism.

1 is the prompt number. Each time you enter a command, it is associated with this
number, and the prompt number is incremented. One way to re-execute the command is
to enter!!1 (two exclamation marks and the number of the command). We’ll look at
more comfortable ones on page 131.

To start X from a virtual terminal shell, use thestartx command:

$ startx

If you usexdm, you bypass the virtual terminals and go straight into X. Enter your user
name and password to the login prompt or thexdm login screen, and pressEnter. If you
use thexdm login, you’ll go straight into X.

Figure 7-1: KDE display

unixref.mm,v v4.16 (2003/04/02 06:41:29)

116 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 116

Either way, assuming that you’ve installed and configuredkde, you’ll get a display
similar to that in Figure 7-1. This example includes four windows that are not present on
startup. On startup the central part of the screen is empty. We’ll look at the windows
further below.

The KDE desktop
KDE is a complicated system, and good documentation is available at
http://www.kde.org/documentation/. Once you have KDE running, you can access the
same information via the help icon on the panel at the bottom (the life ring icon). The
following description gives a brief introduction.

The KDE display contains a number of distinct areas. At the top is an optional menu, at
the bottom an almost optionalpanel, and the middle of the screen is reserved for
windows.

The Desktop Menu
The Desktop Menuis at the very top of the screen. It provides functionality that is not
specific to a particular application. Select the individual categories with the mouse. For
example, theNewmenu looks like this:

Figure 7-2: KDE desktop menu

As the menu indicates, you can use these menus to create new files.

The Panel

At the bottom of the screen is the panel, which consists of a number of fields. The left-
hand section is used for starting applications.

The stylized letter K at the extreme left is theApplication Starter. When you select it, a

unixref.mm,v v4.16 (2003/04/02 06:41:29)

The KDE desktop 117

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 117

long vertical menu appears at the left of the screen and allows you to start programs
(‘‘applications’’) or access just about any other function.

Next comes an icon called ‘‘show desktop.’’ This is a convenient way to iconify all the
windows currently on the desktop.

The remaining icons on this part of the panel represent various applications.

• The konsoleterminal emulator.

• Thecommand center, which you use to configure KDE.

• The help system.

• Access to the home directory with the browserkonqueror.

• Access to the Web, also with the browserkonqueror.

• The Kmail MUA.

• The KWord word processor, which can understand Microsoft Word documents.

• The Kspreadspreadsheet.

• The Kpresenterpresentation package.

• The Kate editor.

The next section of the panel contains some control buttons and information about the
current desktop layout:

The section at the left shows the current contents of four screens, numbered 1 to 4.
Screen 1 is the currently displayed screen; you can select one of the others by moving the
cursor in the corresponding direction, or by selecting the field with the mouse.

To the right of that are icons for the currently active windows. The size expands and
contracts depending on the number of different kinds of window active. If you select one
of these icons with the left mouse button, it will iconify or deiconify (‘‘minimize’’ or
‘‘maximize’’) the window. If you have multiplexterms active, you will only have one
icon. In this case, if you select the icon, you will get another pop-up selection menu to
allow you to choose the specific window.

The right part of the panel contains a further three fields:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

118 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 118

• The first one shows a stylized padlock (for locking the session when you leave the
machine; unlock by entering your password) and a stylized off switch, for logging out
of the session.

• The next section shows a stylized power connector, which displays the current power
status of the machine, and a clipboard.

• The right side shows a digital clock.

Probably the most useful part of this section of the panel is not very obvious: the right-
pointing arrow allows you to remove the panel if you find it’s in the way. The entire
panel is replaced by a single left-pointing arrow at the extreme right of the display.

Using the mouse

By default,kde only uses the left and the right mouse buttons. In general, the left button
is used to select a particular button, and the right button is used for an auxiliary menu.

Manipulating windows

You’ll notice that each window has a frame around it with a number of features. In X
terminology, they’re calleddecorations. Specifically:

• There’s atitle bar with the name of the program. If you select the bar itself, you raise
the window above all others. If you hold down the button on the title bar, you can
move the window.

• At the left of the title bar there is an X logo. If you select this logo, you get a menu
of window operations.

• At the right of the title bar, there are three buttons that you can select. The left one
iconifies the window, the middle onemaximizesthe window, making it take up the
entire screen, and the one on the right kills the application. If the window is already
maximized, the middle button restores it to its previous size.

• You can select any corner of the window, or any of the other edges, to change the size
of the window.

The fvwm2 window manager
If you come from a conventional PC background, you shouldn’t hav e much difficulty
with KDE. It’s a relatively complete, integrated environment. But it isn’t really UNIX.
If you come from a UNIX environment, you may find it too all-encompassing. You may
also find that there are significant delays when you start new applications.

UNIX has a very different approach to windows. There is no desktop, just a window
manager. It takes up less disk space, less processor time, and less screen real estate. By
default, XFree86 comes with thetwm window manager, but that’s really a little primitive.
With modern machines, there’s no reason to choose such a basic window manager. You
may, howev er, find thatfvwm2 is more your style than KDE.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

The fvwm2 window manager 119

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 119

Star ting fvwm2
Like KDE, you install fvwm2 from the Ports Collection. It’s not designed to work
completely correctly out of the box, though it does work. As with KDE, the first thing
you need to do is to create a.xsessionor .xinitrc file, depending on whether you’re
runningxdm. It must contain at least the line:

fvwm2

Start X the same way you did for KDE. This time you see, after starting the same
applications as before:

This picture shows both similarities with and differences from KDE. The similarities
include:

• Each window has a frame and a title. The exact form of the decorations is different,
but the purpose is the same. There is no ‘‘close application’’ button: for most UNIX
applications, you should get the program to exit rather than killing it.

• There is a task bar at the bottom right, taking up only half the width of the screen.
The currently active window (thexterm at the left in this example) is highlighted.

• The defaultfvwm2 display also has four screens, and the task bar shows the position
of the windows on the task bar.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

120 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 120

Still, there are a number of differences as well:

• Unless you have a top-end machine, it’smuchfaster in what it does.

• The background (theroot window) doesn’t hav e any pattern; it’s just a grey cross-
hatch.

• You can move from one screen to the other using the cursor, and windows can
overlap. In this example, thegaleon web browser window goes down to the screen
below, and the Emacs window goes over all four screens, as the display on the task
bar shows. With KDE, the only way to display the rest of these windows is to move
the window.

• Paradoxically, you can do a lot more with the mouse. On the root window, the left
mouse button gives you a menu for starting various programs, both locally and
remotely, and also various window utilities. The middle button gives you direct
access to the window manipulation utilities, and the right button gives a drop-down
list to select any of the currently active windows:

The menus above show one of the problems: look at those system names on the left
submenu (dopey, snoopyand friends). They don’t exist on our sample network, and the
chance of them existing on your network are pretty low as well. They’re hard-coded in
the sample configuration file,/usr/X11R6/etc/system.fvwm2rc. To usefvwm2 effectively,
you’ll have to modify the configuration file. The best thing to do is to make a copy of
/usr/X11R6/etc/system.fvwm2rcin your own directory, as̃/.fvwm2/.fvwm2rc. Then you
can have lots of fun tweaking the file to do exactly what you want it to do. Clearly, KDE
is easier to set up.

Changing the X display
When you set up yourXF86Config file, you may have specified more than one
resolution. For example, on page 107 we selected the additional resolution 1024x768
pixels. When you start X, it automatically selects the first resolution, in this case
640x480. You can change to the previous resolution (the one to the left in the list) by
pressing theCtrl -Alt -Keypad - key, and to the following resolution (the one to the right
in the list) withCtrl -Alt -Keypad +. Ke ypad +andKe ypad -refer to the+ and- symbols
on the numeric keypad at the right of the keyboard; you can’t use the+ and- symbols on

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Changing the X display 121

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 121

the main keyboard for this purpose. The lists wrap around: in our example, if your
current resolution is 640x480, and you pressCtrl -Alt -Keypad -, the display changes to
1024x768. It’s a very good idea to keep the default resolution at 640x480 until you have
debugged yourXF86Configparameters: 640x480 almost always works, so if your display
is messed up, you can just switch back to a known good display with a single keystroke.

Selecting pixel depth
You can configure most display boards to display a number of different pixel depths (a
different number of bits per pixel, which translates to a different number of colours).
When you start X, however, it defaults to 8 bits per pixel (256 colours), which is a very
poor rendition. To start it with a different number, specify the number of planes. For
example, to start with 32 bits per pixel (4,294,967,296 colours), enter:

$ startx -- -bpp 32

With older display boards, which had relatively limited display memory, there was a
tradeoff between maximum resolution and maximum pixel depth. Modern display cards
no longer have this limitation. We’ll look at this issue in more detail on page 522.

Getting a shell
As we saw at the beginning of the chapter, your main tools are the shell and the editor,
and that’s what we saw on the sample screens. But when you start X, they’re not there:
you need to start them.

In KDE, you have two ways to start a terminal window:

• You can select the icon showing a monitor with a shell in front of it, third from the
left at the bottom of the example above. This starts thekonsoleterminal emulator.

• You can start anxterm by pressingAlt-F2 . You see a window like the one in the
centre left of Figure 7-1, enter the textxterm (as shown) and pressRun or theEnter
key.

Obviously the first is the intended approach, and it’s easier. Nev ertheless, I recommend
using xterm at least until you’re sure you want to stick withkde: there are some subtle
differences, andkonsole is intended to work withkde only. If you do stick with KDE,
you should change the configuration of thekonsolebutton to startxterm instead; that’s
relatively straightforward.

In fvwm2, you start anxterm from the left mouse menu, as shown above.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

122 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 122

Shell basics
The most basic thing you can do with the shell is to start a program. Consider program
names to be commands: like you might ask somebody to ‘‘wash the dishes’’ or ‘‘mow the
lawn,’’ you can tell the shell to ‘‘remove those files’’:

$ rm file1 file2 file3

This starts a program calledrm (remove), and gives it a list of three file names to
remove.

If you’re removing a whole lot of files, this could take a while. Consider removing the
entire directory hierarchy/usr/obj, which is created when building a new version of the
system (see page 595). This directory hierarchy contains about 15,000 files and
directories, and it’ll take a while to remove it. You can do this with the following
command:

rm -rf /usr/obj &

In this example, we have a couple of options led in by a hyphen (-) and also the character
& at the end of the line.

• The r option tells rm to recursively descend into subdirectories. If you didn’t
specify this, it would remove all files in the directory/usr/obj and then exit,
complaining that it can’t delete directories.

• Thef (force) option tellsrm to continue on error; otherwise if anything goes wrong,
it will stop.

• The& character at the end of the line tells the shell (notrm) to continue after starting
the program. It can run for some time, and there’s no need to wait for it.

Options
In the previous example, we saw a couple of options. By convention, they come between
the command name and other parameters, and they’re identified because they start with a
hyphen character (-). There’s a lot of variation, though, depending on the individual
program.

• Sometimes, as in the previous example, options consist of a single letter and can
often be joined together.

• Some programs, liketar and ps, don’t insist on the hyphen lead-in. In Chapter 8,
we’ll see the command:

ps waux

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Getting a shell 123

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 123

This command could equally well be written:

ps -waux

You may also come across programs that refuse to accept the hyphen at all.

• Sometimes options can have values. For example, in Chapter 23 we’ll see:

tcpdump -i ppp0 host hub.freebsd.org

Here,ppp0 is an argument to thei option. In some cases, it must be written with a
space; in others, it must be written without a space; and in others again, it can be
written either way. Pay attention to this detail when reading man pages.

• In other cases, they can be keywords, in which case they need to be written
separately. The GNU project is particularly fond of this kind of option. For example,
when building the system you may see compiler invocations like these:

cc -O -pipe -Dinline=rpcgen_inline -Wall -Wno-format-y2k -Wno-uninitialized \
-D__FBSDID=__RCSID -c /usr/src/usr.bin/rpcgen/rpc_main.c

With the exception of the last parameter, all of these texts are options, as the hyphen
suggests.

• Options are specific to particular commands, though often several commands attempt
to use the same letters to mean the same sort of thing. Typical ones arev for verbose
output,q for quiet output (i.e. less than normal).

• Sometimes you can run into problems when you supply a parameter that looks like an
option. For example, how do you remove a file called -rf? There are a number of
solutions for this problem. In this example, you could write:

$ rm ./-rf

This is an alternative file naming convention that we’ll look at again on page 126.

Shell parameters
When you invoke a program with the shell, it firstparsesthe input line before passing it
to the program: it turns the line into a number of parameters (calledargumentsin the C
programming language). Normally the parameters are separated bywhite space, either a
space or a tab character. For example, consider the previous example:

$ rm file1 file2 file3

the program receives four arguments, numbered 0 to 3:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

124 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 124

Table 7-1:Program arguments

Argument Value
0 rm
1 file1
2 file2
3 file3

What happens if you want to pass a name with a space? For example, you might want to
look for the text ‘‘Mail rejected’’ in a log file. UNIX has a standard program for
looking for text, calledgrep. The syntax is:

grep expression files

Argument 1 is the expression; all additional arguments are the names of files to search.
We could write:

$ grep Mail rejected /var/log/maillog

but that would try to look for the textMail in the filesrejected(probably causing an error
message that the file did not exist) and/var/log/maillog (where just about every line
contains the textMail). That’s not what we want. Instead, we do pretty much what I
wrote above:

$ grep "Mail rejected" /var/log/maillog

In other words, if we put quote characters"" around a group of words, the shell will
interpret them as a single parameter. The first parameter that is passed togrep is Mail
rejected, not"Mail rejected".

This behaviour of the shell is a very good reason not to use file names with spaces in
them. It’s perfectly legitimate to embed spaces into UNIX file names, but it’s a pain to
use. If you want to create a file name that contains several words, for example
All files updated since last week, consider changing the spaces to underscores:
All_files_updated_since_last_week.

It’s even more interesting to see what happens when you pass a globbing character to a
program, for example:

$ cc -o foo *.c

This invocation compiles all C source files (*.c) and creates a programfoo. If you do this
with Microsoft, the C compiler gets four parameters, and it has to find the C source files
itself. In UNIX, the shell expands the text*.c and replaces it with the names of the
source files. If there are thirty source files in the directory, it will pass a total of 33
parameters to the compiler.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Getting a shell 125

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 125

Fields that can contain spaces
The solution to the ‘‘Mail rejected’’ problem isn’t ideal, but it works well enough as long
as you don’t hav e to handle fields with blanks in them too often. In many cases, though,
particularly in configuration files, fields with blanks are relatively common. As a result, a
number of system configuration files use a colon (:) as a delimiter. This looks very
confusing at first, but it turns out not to be as bad as the alternatives. We’ll see some
examples in thePATH environment variable on page 130, in the password file on page
144, and in the login class file on page 570.

Files and file names
Both UNIX and Microsoft environments store disk data infiles, which in turn are placed
in directories. A file may be a directory: that is, it may contain other files. The
differences between UNIX and Microsoft start withfile names. Traditional Microsoft file
names are rigid: a file name consists of eight characters, possibly followed by a period
and another three characters (the so-calledfile name extension). There are significant
restrictions on which characters may be used to form a file name, and upper and lower
case letters have the same meaning (internally, Microsoft converts the names to UPPER
CASE). Directory members are selected with a backslash (\), which conflicts with other
meanings in the C programming language—see page 138 for more details.

FreeBSD has a very flexible method of naming files. File names can contain any
character except/, and they can be up to 255 characters long. They arecase-sensitive:
the namesFOO, Foo andfoo are three different names. This may seem silly at first, but
any alternative means that the names must be associated with a specific character set.
How do you upshift the German nameungleichmäßig? What if the same characters
appear in a Russian name? Do they still shift the same? The exception is because the/
character represents directories. For example, the name/home/fred/longtext-with-a-long-
namerepresents:

1. First character is a/, representing theroot file system.

2. homeis the name of a directory in the root file system.

3. fred is the name of a directory in/home.

4. The name suggests thatlongtext-with-a-long-nameis probably a file, not a directory,
though you can’t tell from the name.

As a result, you can’t use/ in a file name. In addition, binary 0s (the ASCIINUL
character) can confuse a lot of programs. It’s almost impossible to get a binary 0 into a
file name anyway: that character is used to represent the end of a string in the C
programming language, and it’s difficult to input it from the keyboard.

Case sensitivity no longer seems as strange as it once did: web browsers have made
UNIX file names more popular withUniform Resource Indicatorsor URIs, which are
derived from UNIX names.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

126 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 126

File names and extensions
The Microsoft naming convention (name, period and extension) seems similar to that of
UNIX. UNIX also uses extensions to represent specific kinds of files. The difference is
that these extensions (and their lengths) are implemented by convention, not by the file
system. In Microsoft, the period between the name and the extension is a typographical
feature that only exists at the display level: it’s not part of the name. In UNIX, the period
is part of the name, and names likefoo.bar.bazzotare perfectly valid file names. The
system doesn’t assign any particular meaning to file name extensions; instead, it looks for
magic numbers, specific values in specific places in the file.

Relative paths
Every directory contains two directory entries,. and .. (one and two periods). These are
relative directory entries: . is an alternative way to refer to the current directory, and..
refers to the parent directory. For example, in/home/fred, . refers to/home/fred, and ..
refers to/home. The root directory doesn’t hav e a parent directory, so in this directory
only, .. refers to the same directory. We’ll see a number of cases where this is useful.1

Globbing characters
Most systems have a method of representing groups of file names and other names,
usually by using special characters for representing an abstraction. The most common in
UNIX are the characters*, ? and the square brackets[]. UNIX calls these characters
globbing characters. The Microsoft usage comes from UNIX, but the underlying file
name representation makes for big differences. Table 7-2 gives some examples.

Table 7-2:Globbing examples

Name Microsoft meaning UNIX meaning
CONFIG.* All files with the nameCONFIG,

no matter what their extension.
All files whose name starts with
CONFIG., no matter what the rest
is. Note that the name contains a
period.

CONFIG.BA? All files with the nameCONFIG
and an extension that starts with
BA, no matter what the last
character.

All files that start with CON-
FIG.BA and have one more char-
acter in their name.

* Depending on the Microsoft ver-
sion, all files without an extension,
or all files.

All files.

. All files with an extension. All files that have a period in the
middle of their name.

1. Interestingly, the Microsoft file systems also have this feature.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 127

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 127

foo[127] In older versions, invalid. In new-
er versions with long file name
support, the file with the name
foo[127].

The three files foo1, foo2 and
foo7.

Input and output
Most programs either read input data or write output data. To make it easier, the shell
usually starts programs with at least three open files:

• Standard input, often abbreviated tostdin, is the file that most programs read to get
input data.

• Standard output, or stdout, is the normal place for programs to write output data.

• Standard error output, or stderr, is a separate file for programs to write error
messages.

With an interactive shell (one that works on a terminal screen, like we’re seeing here), all
three files are the same device, in this case the terminal you’re working on.

Why two output files? Well, you may be collecting something important, like a backup
of all the files on your system. If something goes wrong, you want to know about it, but
you don’t want to mess up the backup with the message.

Redirecting input and output

But of course, even if you’re running an interactive shell, you don’t want to back up your
system to the screen. You need to changestdoutto be a file. Many programs can do this
themselves; for example, you might make a backup of your home directory like this:

$ tar -cf /var/tmp/backup ˜

This creates (optionc) a file (optionf) called /var/tmp/backup, and includes all the files
in your home directory (˜). Any error messages still appear on the terminal, asstderr
hasn’t been changed.

This syntax is specific totar. The shell provides a more general syntax for redirecting
input and output streams. For example, if you want to create a list of the files in your
current directory, you might enter:

$ ls -l
drwxr-xr-x 2 root wheel 512 Dec 20 14:36 CVS
-rw-r--r-- 1 root wheel 7928 Oct 23 12:01 Makefile
-rw-r--r-- 5 root wheel 209 Jul 26 07:11 amd.map
-rw-r--r-- 5 root wheel 1163 Jan 31 2002 apmd.conf
-rw-r--r-- 5 root wheel 271 Jan 31 2002 auth.conf
-rw-r--r-- 1 root wheel 741 Feb 19 2001 crontab
-rw-r--r-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rw-r--r-- 5 root wheel 482 Jan 31 2002 csh.login

(etc)

unixref.mm,v v4.16 (2003/04/02 06:41:29)

128 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 128

You can redirect this output to a file with the command:

$ ls -l > /var/tmp/etclist

This puts the list in the file/var/tmp/etclist. The symbol> tells the shell to redirectstdout
to the file whose name follows. Similarly, you could use the< to redirectstdin to that
file, for example when usinggrep to look for specific texts in the file:

$ grep csh < /var/tmp/etclist
-rw-r--r-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rw-r--r-- 5 root wheel 482 Jan 31 2002 csh.login
-rw-r--r-- 5 grog lemis 110 Jan 31 2002 csh.logout

In fact, though, there’s a better way to do that: what we’re doing here is feeding the
output of a program into the input of another program. That happens so often that there’s
a special method of doing it, calledpipes:

$ ls -l | grep csh
-rw-r--r-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rw-r--r-- 5 root wheel 482 Jan 31 2002 csh.login
-rw-r--r-- 5 grog lemis 110 Jan 31 2002 csh.logout

The| symbol causes the shell to start two programs. The first has a special file, apipe, as
the output, and the second has the same pipe as input. Nothing gets written to disk, and
the result is much faster.

A typical use of pipes are to handle quantities of output data in excess of a screenful.
You can pipe to theless1 program, which enables you to page backward and forward:

$ ls -l | less

Another use is to sort arbitrary data:

$ ps aux | sort -n +1

This command takes the output of theps command and sorts it by the numerical (-n)
value of itssecondcolumn (+1). The first column is numbered 0. We’ll look atps on
page 148.

Environment variables
The UNIX programming model includes a concept calledenvironment variables. This
rather unusual sounding name is simply a handy method of passing relatively long-lived
information of a general nature from one program to another. It’s easier to demonstrate
the use than to describe. Table 7-3 takes a look at some typical environment variables.
To set environment variables from Bourne-style shells, enter:

1. Why less? Originally there was a program calledmore, but it isn’t as powerful.less is a new program with
additional features, which proves beyond doubt thatless is more.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 129

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 129

$ export TERM=xterm

This sets the value of theTERM variable toxterm. The wordexport tells the shell to
pass this information to any program it starts. Once it’s exported, it stays exported. If the
variable isn’t exported, only the shell can use it.

Alternatively, if you want to set the variable only once when running a program, and then
forget it, you can set it at the beginning of a command line:

$ TERM=xterm-color mutt

This starts themutt mail reader (see page 474) withxterm’s colour features enabled.

For csh and tcsh, set environment variables with:

% setenv TERM xterm

To start a process with these variables, enter:

% env xterm-color mutt

Table 7-3:Common environment variables

Name Purpose
BLOCKSIZE The size of blocks that programs likedf count. The default is 512 bytes,

but it’s often more convenient to use 1024 or even 1048576 (1 MB).

DISPLAY When running X, the name of the X server. For a local system, this is
typicallyunix:0. For remote systems, it’s in the form
system-name:server-number.screen-number. For the systembum-
ble.example.org, you would probably writebumble.example.org:0.

EDITOR The name of your favourite editor. Various programs that start editors
look at this variable to know which editor to start.

HOME The name of your home directory.

LANG The locale that you use. This should be the name of a directory in
/usr/share/locale.

MAIL Some programs use this variable to find your incoming mail file.

MANPATH A list of path names, separated by colons (:), that specifies where theman
program should look for man pages. A typical string might be
/usr/share/man:/usr/local/man, and specifies that there are man
pages in each of the directories/usr/share/manand /usr/local/man.

NTAPE The name of the non-rewinding tape device. See page 252 for more
details.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

130 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 130

Name Purpose
PATH A list of path names, separated by colons (:), that specifies where the shell

should look for executable programs if you specify just the program name.

PS1 In Bourne-style shells, this is the prompt string. It’s usually set to$, but
can be changed. See page 114 for a discussion of a possible prompt for
bash.

PS2 In Bourne-style shells, this is the prompt string for continuation lines. It’s
usually set to>.

SHELL The name of the shell. Some programs use this for starting a shell.

TAPE The name of the rewinding tape device. See page 252 for more details.

TERM The type of terminal emulation you are using. This is very important:
there is no other way for an application to know what the terminal is, and
if you set it to the wrong value, full-screen programs will behave
incorrectly.

TZ Time zone. This is the name of a file in/usr/share/zoneinfothat describes
the local time zone. See the section on timekeeping on page 155 for more
details.

Note particularly thePATH variable. One of the most popular questions in theFreeBSD-
questions mailing list is ‘‘I have compiled a program, and I can see it in my directory,
but when I try to run it, I get the message ‘‘command not found.’’ This is usually
becausePATH does not include the current directory.

It’s good practicenot to have your current directory or your home directory in thePATH: if you do,
you can be subject to security compromises. For example, somebody could install a program
called ps in the directory/var/tmp. Despite the name, the program might do something else, for
example remove all files in your home directory. If you change directory to/var/tmp and runps,
you will remove all files in your home directory. Obviously much more subtle compromises are
possible.

Instead, run the program like this:

$./program

You should set yourPATH variable to point to the most common executable directories.
Add something like this to your.profile file (for Bourne-style shells):

PATH=/usr/bin:/usr/local/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin
export PATH

This variable is of great importance: one of the leading problems that beginners have is to
have an incorrectPATH variable.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 131

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 131

Printing out environment variables

So you can’t start a program, and you’re wondering whether yourPATH environment
variable is set correctly. You can find out with theechocommand:

$ echo $PATH
/bin:/usr/bin

The$ at the beginning of$PATH tells the shell to substitute the value of the environment
variable for its name. Without this, the shell has no way of knowing that it’s an
environment variable, so it passes the textPATH to echo, which just prints it out.

If you want to print out all the environment variables, use theprintenv command:

$ printenv | sort
BLOCKSIZE=1048576
CLASSPATH=/usr/local/java/lib:/usr/local/java/lib/classes.zip:/home/grog/netscape/
CVSROOT=/home/ncvs
DISPLAY=freebie:0
EDITOR=emacs
HOME=/home/grog
PAGER=less
PATH=.:/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin:/usr/local/bin:/usr/local/sbin
XAUTHORITY=/home/grog/.Xauthority

This example sorts the variables to make it easier to find them. In all probability, you’ll
find many more variables.

Command line editing
Typing is a pain. If you’re anything like me, you’re continually making mistakes, and
you may spend more time correcting typing errors than doing the typing in the first place.
It’s particularly frustrating when you enter something like:

$ groff -rex=7.5 -r$$ -rL -rW -rN2 -mpic tmac.M unixerf.mm
troff: fatal error: can’t open ‘unixerf.mm’: No such file or directory

This commandshould create the PostScript version of this chapter, but unfortunately I
messed up the name of the chapter: it should have beenunixref.mm, and I typed
unixerf.mm.

Yes, I know this looks terrible. In fact, UNIX has ways to ensure you almost never need to write
commands like this. The command I really use to format this chapter is ‘‘make unixref’’.

It would be particularly frustrating if I had to type the whole command in again. UNIX
offers a number of ways to make life easier. The most obvious one is so obvious that you
tend to take it for granted: theBackspacekey erases the last character you entered. Well,
most of the time. What if you’re running on a machine without aBackspacekey? You
won’t hav e that problem with a PC, of course, but a lot of workstations have aDEL key
instead of aBackspacekey. UNIX lets you specify what key to use to erase the last
character entered. By default, the erase character really isDEL , but the shell startup
changes it and prints out a message saying what it has done:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

132 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 132

erase ˆH, kill ˆU, intr ˆC, status ˆT

in the example on page 113.ˆH (Ctrl-H) is an alternative representation forBackspace.

The three other functionskill, intr, andstatus perform similar editing functions.
kill erases the whole line, andintr stops a running program.

More correctly,intr sends asignal called SIGINT to the process. This normally causes a
program to stop.

You’ll notice that it is set toCtrl-C , so its function is very similar to that of the MS-DOS
Break key. status is an oddball function: it doesn’t change the input, it just displays a
statistics message.bashdoesn’t in fact use it: it has a better use forCtrl-T .

In fact, these control characters are just a few of a large number of control characters that
you can set. Table 7-4 gives an overview of the more common control characters. For a
complete list, see the man pagestty(1).

Table 7-4:Terminal control characters

Name Default Function
CR \r Go to beginning of line. Normally, this also terminates input (in

other words, it returns the complete line to the program, which
then acts on the input).

NL \n End line. Normally, this also terminates input.

INTR Ctrl-C Generate aSIGINT signal. This normally causes the process to
terminate.

QUIT Ctrl-| Generate aSIGQUIT signal. This normally causes the process to
terminate andcore dump, to sav e a copy of its memory to disk for
later analysis.

ERASE DEL Erase last character. FreeBSD sets this toBackspaceon login, but
under some unusual circumstances you might find it still set to
DEL .

KILL Ctrl-U Erase current input line.

EOF Ctrl-D Return end-of-file indication. Most programs stop when they
receive an EOF.

STOP Ctrl-S Stop output. Use this to examine text that is scrolling faster than
you can read.

START Ctrl-Q Resume output after stop.

SUSP Ctrl-Z Suspend process. This key generates aSIGTSTP signal when
typed. This normally causes a program to be suspended. To
restart, use thefg command.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 133

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 133

Name Default Function
DSUSP Ctrl-Y Delayed suspend. Generate aSIGTSTP signal when the character

is read. Otherwise, this is the same asSUSP.

REPRINT Ctrl-R Redisplay all characters in the input queue (in other words,
characters that have been input but not yet read by any process).
The term "print" recalls the days of harcopy terminals. Many
shells disable this function.

DISCARD Ctrl-O Discard all terminal output until anotherDISCARD character
arrives, more input is typed or the program clears the condition.

To set these characters, use thestty program. For example, if you’re used to erasing the
complete input line withCtrl-X , and specifying an end-of-file condition withCtrl-Z , you
could enter:

$ stty susp \377 kill ˆX eof ˆZ

You need to setSUSP to something else first, because by default it isCtrl-Z, so the
system wouldn’t know which function to perform if you pressˆZ.

The combination\377 represents the character octal 377 (this notation comes from the C
programming language, and its origin is lost in the mists of time, back in the days when UNIX ran
on PDP-11s). This character is the ‘‘null’’ character that turns off the corresponding function.
System V uses the character\0 for the same purpose.

In this particular case,̂X really does mean the characterˆ followed by the letterX, and
not Ctrl-X , the single character created by holding down theControl character and
pressingX at the same time.

Command history and other editing functions
Nowadays, most shells supply acommand historyfunction and additional functionality
for editing it. We’ll take a brief look at these features here—for more details, see the man
pages for your shell.

Shell command line editing has been through a number of evolutionary phases. The
original Bourne shell supplied no command line editing at all, though the version
supplied with FreeBSD gives you many of the editing features of more modern shells.
Still, it’s unlikely that you’ll want to use the Bourne shell as your shell:bash, ksh, and
zsh are all compatible with the Bourne shell, but they also supply better command line
editing.

The next phase of command line editing was introduced with the C shell,csh. By
modern standards, it’s also rather pitiful. It’s described in thecsh man page if you really
want to know. About the only part that is still useful is the ability to repeat a previous
command with the!! construct. Modern shells supply command line editing that
resembles the editorsvi or Emacs. In bash, sh, ksh, andzsh you can make the choice by
entering:

unixref.mm,v v4.16 (2003/04/02 06:41:29)

134 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 134

$ set -o emacs for Emacs-style editing
$ set -o vi for vi-style editing

In tcsh, the corresponding commands are:

% bind emacs
% bind vi

Normally you put one of these commands in your startup file.

In Emacsmode, you enter the commands simply by typing them in. Invi mode, you
have to pressESC first. Table 7-5 shows an overview of the more typical Emacs-style
commands inbash. Many other shells supply similar editing support.

As the name suggests, theEmacseditor understands the same editing characters. It also
understands many more commands than are shown here. In addition, many X-based
commands, including web browsers, understand some of these characters.

Table 7-5:Emacs editing characters

Key Function
Ctrl-A Move tothe beginning of the line.
LeftArrow Move to previous character on line.
Ctrl-B Move to previous character on line (alternative).
Ctrl-D Delete the character under the cursor. Be careful with this character:

it’s also the shell’s end-of-file character, so if you enter it on an empty
line, it stops your shell and logs you out.

Ctrl-E Move tothe end of the line.
RightArrow Move to nextcharacter on line.
Ctrl-F Move to nextcharacter on line (alternative).
Ctrl-K Erase the rest of the line. The contents are saved to aring buffer of

erased text and can be restored, possibly elsewhere, withCtrl-Y .
Ctrl-L Erase screen contents (shell) or redraw window (Emacs).
DownArrow Move to nextinput line.
Ctrl-N Move to nextinput line (alternative).
UpArrow Move to previous input line.
Ctrl-P Move to previous input line (alternative).
Ctrl-R Incremental search backward for text.
Ctrl-S Incremental search forward for text.
Ctrl-T Transpose the character under the cursor with the character before the

cursor.
Ctrl-Y Insert previously erased withCtrl-K or Alt-D .
Ctrl-_ Undo the last command.
Alt-C Capitalize the following word.
Alt-D Delete the following word.
Alt-F Move forward one word.
Alt-L Convert the following word to lower case.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 135

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 135

Key Function
Alt-T Transpose the word before the cursor with the one after it.
Alt-U Convert the following word to upper case.
Ctrl-X Ctrl-S Save file (Emacsonly).
Ctrl-X Ctrl-C Exit theEmacseditor.

You’ll note a number of alternatives to the cursor keys. There are two reasons for them:
firstly, the shell andEmacsmust work on systems without arrow keys on the keyboard.
The second reason is not immediately obvious: if you’re a touch-typer, it’s easier to type
Ctrl-P than take your hands away from the main keyboard and look for the arrow key.
The arrows are good for beginners, but if you get used to the control keys, you’ll never
miss the arrow keys.

File name completion

As we have seen, UNIX file names can be much longer than traditional Microsoft names,
and it becomes a problem to type them correctly. To address this problem, newer shells
provide file name completion. In Emacsmode, you typically type in part of the name,
then press theTab key. The shell checks which file names begin with the characters you
typed. If there is only one, it puts in the missing characters for you. If there are none, it
beeps (rings the ‘‘terminal bell’’). If there are more than one, it puts in as many letters as
are common to all the file names, and then beeps. For example, if I have a directory
docco in my home directory, I might enter:

=== grog@freebie (/dev/ttyp4) ˜ 14 -> cd docco/
=== grog@freebie (/dev/ttyp4) ˜/docco 15 -> ls
freebsd.faq freebsd.fbc freeware
=== grog@freebie (/dev/ttyp4) ˜/docco 16 -> emacs freebeepbsd.fbeepaq

Remember that my input is inconstant width bold font, and the shell’s output is in
constant width font. On the first line, I entered the characterscd doc followed by a
Tab character, and the shell completed with the textco/. On the last line, I entered the
charactersemacs f and aTab. In this case, the shell determined that there was more
than one file name that started like this, so it added the lettersree and rang the bell. I
entered the letterb and pressedTab again, and the shell added the letterssd.f and
beeped again. Finally, I added the lettersaq to complete the file namefreebsd.faq.

Command line completion invi mode is similar: instead of pressingTab, you pressESC
twice.

Shell startup files
As we saw above, there are a lot of ways to customize your shell. It would be
inconvenient to have to set them every time, so all shells provide a means to set them
automatically when you log in. Nearly every shell has its own startup file. Table 7-6
gives an overview.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

136 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 136

Table 7-6:Shell startup files

Shell startup file
bash .profile, then.bashrc
csh .loginon login, always.cshrc
sh .profile
tcsh .loginon login, always.tcshc, .cshrcif .tcshrcnot found

These files are shell scripts—in other words, straight shell commands. Figure 7-3 shows
a typical .bashrcfile to set the environment variables we discussed.

umask 022
export BLOCKSIZE=1024 # for df
export CVSROOT=/src/ncvs
export EDITOR=/opt/bin/emacs
export MANPATH=/usr/share/man:/usr/local/man
export MOZILLA_HOME=/usr/local/netscape
export PAGER=less
export PATH=/usr/bin:/usr/local/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin
PS1="=== \u@\h (‘tty‘) \w \# -> "
PS2="\u@\h \w \! ++ "
export SHELL=/usr/local/bin/bash
export TAPE=/dev/nsa0 # note non-rewinding as standard
if ["$TERM" = ""]; then
export TERM=xterm

fi
if ["$DISPLAY" = ""]; then
export DISPLAY=:0

fi
/usr/games/fortune # print a fortune cookie

Figure 7-3: Minimal .bashrc file

It would be tedious for every user to put settings in their private initialization files, so the
shells also read a system-wide default file. For the Bourne shell family, it is/etc/profile,
while the C shell family has three files:/etc/csh.login to be executed on login,
/etc/csh.cshrc to be executed when a new shell is started after you log in, and
/etc/csh.logoutto be executed when you stop a shell. The start files are executed before
the corresponding individual files.

In addition, login classes (page 570) offer another method of setting environment
variables at a global level.

Changing your shell
The FreeBSD installation givesroot a C shell,csh. This is the traditional BSD shell, but
it has a number of disadvantages: command line editing is very primitive, and the script
language is significantly different from that of the Bourne shell, which is thede facto
standard for shell scripts: if you stay with the C shell, you may still need to understand
the Bourne shell. The latest version of the Bourne shellsh also includes some command
line editing. See page 133 for details of how to enable it.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Files and file names 137

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 137

If you want to stay with acsh-like shell, you can get better command line editing with
tcsh, which is also in the base system. You can get both better command line editing and
Bourne shell syntax withbash, in the Ports Collection.

If you haveroot access, you can usevipw to change your shell, but there’s a more
general way: usechsh (Change Shell). Simply run the program. It starts your favourite
editor (as defined by theEDITOR environment variable). Here’s an example before:

#Changing user database information for velte.
Shell: /bin/csh
Full Name: Jack Velte
Location:
Office Phone:
Home Phone:

You can change anything after the colons. For example, you might change this to:

#Changing user database information for velte.
Shell: /usr/local/bin/bash
Full Name: Jack Velte
Location: On the road
Office Phone: +1-408-555-1999
Home Phone:

chsh checks and updates the password files when you save the modifications and exit the
editor. The next time you log in, you get the new shell.chsh tries to ensure you don’t
make any mistakes—for example, it won’t let you enter the name of a shell that isn’t
mentioned in the file/etc/shells—but it’s a very good idea to check the shell before
logging out. You can try this withsu, which you normally use to become super user:

bumble# su velte
Password:
su-2.00$ note the new prompt

You might hear objections to usingbash as a root shell. The argument goes something
like this: bash is installed in/usr/local/bin, so it’s not available if you boot into single-
user mode, where only the root file system is available. Even if you copy it to, say,/bin,
you can’t run it in single-user mode because it needs libraries in/usr/lib.

In fact, this isn’t a problem. If you install the system the way I recommend in Chapter 5,
/usr is on the root file system. Even if it isn’t, though, you don’t hav e to usebash in
single-user mode. When you boot to single-user mode, you get a prompt asking you
which shell to start, and suggesting/bin/sh.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

138 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 138

Differences from Microsoft
If you’re coming from a Microsoft background, there are a few gotchas that you might
trip over.

Slashes: backward and forward
/ (slash) and\ (backslash) are confusing. As we’ve seen, UNIX uses/ to delimit
directories. The backslash\ is called anescape character. It has several purposes:

• You can put it in front of another special character to say ‘‘don’t interpret this
character in any special way.’’ We’ve seen that the shell interprets a space character
as the end of a parameter. In the previous example we changedMail rejected to
"Mail rejected" to stop the shell from interpreting it. We could also have written:
Mail\ rejected.

A more common use for thisquoting is to tell the shell to ignore the end of a line. If
a command line in a shell script gets too long, you might like to split it up into several
lines; but the shell sees the end of a line as a go-ahead to perform the command. Stop
it from doing so by putting a backslashimmediatelybefore the end of the line:

$ grep \
"Mail rejected" \
/var/log/maillog

Don’t put any spaces between the\ and the end of the line; otherwise the shell will
interpret the first space as a parameter by itself, and then it will interpret the end of
line as the end of the command.

• In the C programming language, the backslash is used to represent severalcontrol
characters. For example,\n means ‘‘new line.’’ This usage appears in many other
places as well.

• Using\ as an escape character causes problems: how do we put a\ character on a
line? The answer: quote it. Write\\ when you mean\. This causes particular
problems when interfacing with Microsoft: if you give a Microsoft path name to a
shell, it needs the doubled backslashes:C:\\WINDOWS.

Tab characters
We’v e seen that the shell treats ‘‘white space,’’ either spaces or tab characters, as the
same. Unfortunately, some other programs do not.make, sendmailandsyslogdmake a
distinction between the two kinds of characters, and they all require tabs (not spaces) in
certain places. This is areal nuisance, because hardly any editor makes a distinction
between them.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

Differences from Microsoft 139

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 139

Carriage control characters
In the olden days, the standard computer terminal was a Teletype, a kind of computer-
controlled electric typewriter. When the carriage, which contained the print head, got to
the end of a line, it required two mechanical operations to move to the beginning of the
next line: thecarriage return control character told it to move the carriage back to the
beginning of the line, and theline feedcharacter told it turn the platen to the next line.

Generations of computer systems emulated this behaviour by putting both characters at
the end of each text line. This makes it more difficult to recognize the end of line, it uses
up more storage space, and normally it doesn’t buy you much. The implementors of
UNIX decided instead to use a single character, which it calls thenew linecharacter. For
some reason, they chose the line feed to represent new line, though the character
generated byEnter is a carriage return. As we saw above, the C programming language
represents it as\n.

This causes problems transferring data between FreeBSD and Microsoft, and also when
printing to printers that still expect both characters. We’ll look at the file transfer issues
on page 260 and the printer issues on page 267.

The Emacs editor
Apart from the shell, your second most important tool is theeditor, a program that creates
and changes texts. Another divergence of concept between UNIX and Microsoft
environments is that UNIX gives you a choice of editors in just about anything you do.
Microsoft products frequently try to redefine the whole environment, so if you change
mailers, you may also have to change the editor you use to write mail. This has a
profound effect on the way you work. In particular, the Microsoft way makes it
uninteresting to write a really good editor, because you can’t use it all the time.

The standard BSD editor isvi, about which people speak with a mixture of admiration,
awe and horror.vi is one of the oldest parts of BSD. It is a very powerful editor, but
nobody would say that it is easy to learn. There are two reasons to usevi:

1. If you’re already an experiencedvi hacker, you probably won’t want to change.

2. If you do a lot of work on different UNIX systems, you can rely onvi being there.
It’s about the only one on which you can rely.

If, on the other hand, you don’t knowvi, and you only work on systems whose software
you can control, you probably shouldn’t usevi. Emacsis much easier to learn, and it is
more powerful thanvi.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

140 Chapter 7: The tools of the trade

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 140

Figure 7-4: Emacs main menu

When running under X,Emacsdisplays its own window (vi uses anxterm under these
circumstances). As a result, if you startEmacsfrom an xterm, you should use the&
character to start it in the background:

$ emacs &

Figure 7-4 shows the resulting display. As you can see, the first thing thatEmacsoffers
you is a tutorial. You should take it. You’ll also notice the menu bars at the top.
Although they look primitive compared to graphics toolbars, they offer all the
functionality of graphics-oriented menus. In addition, they will tell you the keystrokes
that you can use to invoke the same functions. Figure 7-5 gives an example of theFiles
menu.

There is a lot of documentation forEmacs, much of it on line. The completeEmacs
handbook is available via theinfo mode ofEmacs, which is described in the tutorial. If
that’s not enough, readLearning GNU Emacs, by Debra Cameron, Bill Rosenblatt and
Eric Raymond.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

The Emacs editor 141

19 June 2003, 14:24:54 The Complete FreeBSD (unixref.mm), page 141

Figure 7-5: Emacs files menu

Stopping the system
To stop X, press the key combinationCtrl -Alt -Backspace, which is deliberately chosen
to resemble the key combinationCtrl -Alt -Deleteused to reboot the machine.Ctrl -Alt -
Backspacestops X and returns you to the virtual terminal in which you started it. If you
run fromxdm, it redisplays a login screen.

To stop the system, use theshutdownprogram. To do so, you need to be a member of
groupoperator.

By default, KDE uses thehalt program. Onlyroot can use this program, so you should
reconfigure KDE to useshutdown. After this, you can shut down from KDE with the
keystroke combinationCtrl-Alt-PageDown.

unixref.mm,v v4.16 (2003/04/02 06:41:29)

