
The Complete

FreeBSD
Documentation from the Source

Greg Lehey

4th Edition

Covers Version 5.0

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 143

8
Taking control

In this chapter:
• Users and groups
• The super user
• Processes
• Daemons
• Stopping processes
• Timekeeping
• Log files
• Multiple processor

suppor t
• PC Card devices
• Emulating other

systems
• Emulating Linux
• Emulating SCO UNIX
• Emulating Microsoft

Windows

In this chapter:
• Users and groups
• The super user
• Processes
• Daemons
• Stopping processes
• Timekeeping
• Log files
• Multiple processor

suppor t
• PC Card devices
• Emulating other

systems
• Emulating Linux
• Emulating SCO UNIX
• Emulating Microsoft

Windows

In Chapter 7 we saw the basics of working with FreeBSD. In this part of the book, we’ll
look at some more system-specific issues. This chapter discusses the following topics:

• UNIX is a multi-user operating system. We’v e already skimmed over creating user
accounts, but on page 144 we’ll look at it in more detail.

• Not all users are created equal. In particular, the system administration loginroot
has power over all other users. We’ll look atroot on page 146.

• UNIX implements multi-tasking via a mechanism calledprocesses. We’ll look at
them on page 148.

• Timekeeping is extremely important in a networking system. If your system has the
wrong time, it can cause all sorts of strange effects. On page 155 we’ll look at how to
ensure that your system is running the correct time.

• A number of events are of interest in keeping a machine running smoothly. The
system can help by keeping track of what happens. One mechanism for this islog
files, files that contain information about what has happened on the machine. We’ll
look at them on page 157.

• On page 159, we’ll look at how FreeBSD handles systems with more than one
processor. This is also calledSymmetrical Multi-Processor or SMP support.

• Nearly every modern laptop has as special bus for plugin cards. It used to be called
PCMCIA, an acronym for the rather unlikely namePersonal Computer Memory Card
International Association. Now adays it’s calledPC Card. It was later upgraded to a
32 bit bus calledCardBus. We’ll look at how FreeBSD supports PC Card and
CardBus on page 159.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29) 143

144 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (../tools/tmac.Mn), page 144

• Starting on page 162, we’ll look at FreeBSD’s support for emulating other operating
systems.

• Other aspects of FreeBSD are so extensive that we’ll dedicate separate chapters to
them. We’ll look at them in Chapters 9 to 15.

• Starting and stopping the system is straightforward, but there are a surprising number
of options. Many of them are related to networking, so Chapter 29 is located after the
networking section.

Users and groups
We’v e already looked at users in Chapter 7. In this chapter, we’ll take a deeper look.

In traditional UNIX, information about users was kept in the file/etc/passwd. As the
name suggests, it included the passwords, which were stored in encrypted form. Any
user could read this file, but the encryption was strong enough that it wasn’t practical to
decrypt the passwords. Nowadays processors are much faster, and it’s too easy to crack a
password. As a result, FreeBSD keeps the real information in a file called/etc/mas-
ter.passwd, and for performance reasons it also makes it available in database form in
/etc/pwd.db and /etc/spwd.db. None of these file are user-readable./etc/passwd remains
for compatibility reasons: some third-party programs access it directly to get information
about the environment in which they are running.

Choosing a user name
So what user name do you choose? User names are usually related to your real name and
can be up to eight characters long. Like file names, they’re case-sensitive. By
convention, they are in all lower case, even when they represent real names. Typical
ways to form a user name are:

• First name. In my personal case, this would begreg.

• Last name (lehey).

• First name and initial of last name (gregl).

• Initial of first name, and last name (glehey).

• Initials (gpl).

• Nickname (for example,grog).

I choose the last possibility, as we will see in the following discussion.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Users and groups 145

19 June 2003, 14:24:54 The Complete FreeBSD (../tools/tmac.Mn), page 145

Adding users
We’v e already seen how to usesysinstall to create a user. It’s not the only way. There
are at least two other methods. One is the programadduser:

adduser
Use option ‘‘-verbose’’ if you want see more warnings & questions
or try to repair bugs.

Enter username [a-z0-9]: yana
Enter full name []: Yana Lehey
Enter shell bash csh date no sh [bash]: accept the default
Uid [1000]: accept the default
Enter login class: default []: accept the default
Login group yana [yana]: home
Login group is ‘‘home’’. Invite yana into other groups: no
[no]: wheel to be able to use su
Enter password []: no echo
Enter password again []: no echo

Name: yana
Password: ****
Fullname: Yana Lehey
Uid: 1000
Gid: 1001 (home)
Class:
Groups: home wheel
HOME: /home/yana
Shell: /bin/bash
OK? (y/n) [y]: accept the default
Added user ‘‘yana’’
Add another user? (y/n) [y]: n

An alternative way of adding or removing users is with thevipw program. This is a more
typical UNIX-hackish approach:vipw starts your favourite editor and allows you to edit
the contents of the file/etc/master.passwd. After you have finished, it checks the contents
and rebuilds the password database. Figure 8-1 shows an example.

Figure 8-1: vipw display

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

146 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (../tools/tmac.Mn), page 146

You might be wondering why would you ever want to do things this way, and you might
find it funny that most experienced UNIX administrators prefer it. The reason is that you
get more of an overview than with a peephole approach that graphical environments give
you, but of course you need to understand the format better. It’s less confusing once you
know that each line represents a single user, that the lines are divided intofields (which
may be empty), and that each field is separated from the next by a colon (:). Table 8-1
describes the fields you see on the line on which the cursor is positioned. You can read
more about the format of/etc/master.passwd in the man pagepasswd(5).

Table 8-1: /etc/master.passwd format

Field Meaning
yvonne User name.

(gibberish) Encrypted password. When adding a new user, leave this field empty
and add it later with thepasswd program.

1005 User number.

1001 Group number.

(empty) Login class, which describes a number of parameters for the user.
We’ll look at it in Chapter 29, on page 570. This field is not included
in /etc/passwd.

0 Password change time. If non-0, it is the time in seconds after which
the password must be changed. This field is not included in
/etc/passwd.

0 Account expiration time. If non-0, it is the time in seconds after which
the user expires. This field is not included in/etc/passwd.

Yvonne Lehey The so-calledgecos field, which describes the user. This field is used
by a number of programs, in particular mail readers, to extract the real
name of the user.

/home/yvonne The name of the home directory.

/bin/bash The shell to be started when the user logs in.

The super user
FreeBSD has a number of privileged users for various administration functions. Some
are just present to be the owners of particular files, while others, such asdaemon and
uucp, exist to run particular programs. One user stands above all others, however:root
may do just about anything. The kernel givesroot special privileges, and you need to
becomeroot to perform a number of functions, including adding other users. Make sure
root has a password if there is any chance that other people can access your system (this
is a must if you have any kind of dialup access). Apart from that,root is a user like any
other, but to quote the man pagesu(1):

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

The super user 147

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 147

By default (unless the prompt is reset by a startup file) the super user prompt is
set to # to remind one of its awesome power.

Becoming super user
Frequently when you’re logged in normally, you want to do something that requires you
to beroot. You can log out and log in again asroot, of course, but there’s an easier
way:

$ su become super user
Password: as usual, it doesn’t echo
root prompt

To usesu, you must be a member of the groupwheel. Normally you do this when you
add the user, but otherwise just put the name of the user at the end of the line in
/etc/group:

wheel:*:0:root,grog add the text in bold face

BSD treatssu somewhat differently from System V. First, you need to be a member of the group
wheel, and secondly BSD gives you more of the super user environment than System V. See the
man page for further information.

Having a singleroot password is a security risk on a system where multiple people
know the password. If one of them leaves the project, you need to change the password.
An alternative is thesudo port (/usr/ports/security/sudo). It provides fine-grained access
to root privileges, all based on the user’s own password. Nobody needs to know the
root password. If a user leaves, you just remove his account, and that cancels his access.

Adding or changing passwords
If your system has any connection with the outside world, it’s a good idea to change your
password from time to time. Do this with thepasswd program. The input doesn’t look
very interesting:

$ passwd
Changing local password for yana.
Old password: doesn’t echo
New password: doesn’t echo
Retype new password: doesn’t echo
passwd: rebuilding the database...
passwd: done

You hav e to enter the old password to make sure that some passer-by doesn’t change it
for you while you’re away from your monitor, and you have to enter the new password
twice to make sure that you don’t mistype and lock yourself out of your account. If this
does happen anyway, you can log in asroot and change the password:root doesn’t
have to enter the old password, and it can change anybody’s password. For example:

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

148 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 148

passwd yana
Changing local password for yana.
New password: doesn’t echo
Retype new password: doesn’t echo
passwd: rebuilding the database...
passwd: done

In this case, you specify the name of the user for whom you change the password.

If you are changing theroot password, be careful: it’s easy enough to lock yourself out
of the system if you mess things up, which could happen if, for example, you mistyped
the password twice in the same way (don’t laugh, it happens). If you’re running X, open
another window and usesu to becomeroot. If you’re running in character mode, select
another virtual terminal and log in asroot there. Only when you’re sure you can still
accessroot should you log out.

If you do manage to lose theroot password, all may not be lost. Reboot the machine to
single-user mode (see page 540), and enter:

mount -u / mount root file system read/write
mount /usr mount /usr file system (if separate)
passwd root change the password for root
Enter new password:
Enter password again:
ˆD enter ctrl-D to continue with startup

If you have a separate/usr file system (the normal case), you need to mount it as well,
since thepasswd program is in the directory/usr/bin. Note that you should explicitly
state the nameroot: in single-user mode, the system doesn’t hav e the concept of user
IDs.

Processes
As we have seen, UNIX is a multi-user, multi-tasking operating system. In particular,
you can run a specific program more than once. We use the termprocess to refer to a
particular instance of a running program. Each process is given aprocess ID, more
frequently referred to asPID, a number between 0 and 99999 that uniquely identifies it.
There are many things that you might like to know about the processes that are currently
running, such as:

• How many processes are running?

• Who is running the processes?

• Why is the system so slow?

• Which process is blocking my access to the modem?

Your primary tool for investigating process behaviour is theps (process status)
command. It has a large number of command options, and it can tell you a whole lot of
things that you will only understand when you have inv estigated how the kernel works,
but it can be very useful for a number of things. Here are some typical uses:

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Processes 149

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 149

What processes do I have running?
After starting a large number of processes in a number of windows under X, you
probably can’t remember what is still running. Maybe processes that you thought had
stopped are still running. To display a brief summary of the processes you have running,
use theps command with no options:

$ ps
PID TT STAT TIME COMMAND
187 p0 Is+ 0:01.02 -bash (bash)
188 p1 Ss 0:00.62 -bash (bash)
453 p1 R+ 0:00.03 ps

This display shows the following information:

• The PID of the process.

• TT is short forteletype, and shows the last few letters of the name of thecontrolling
terminal, the terminal on which the process is running. In this example, the terminals
are /dev/ttyp0 and /dev/ttyp1.

• STAT shows the current process status. It’s inv olved and requires a certain amount of
understanding of how the kernel runs to interpret it—see the man page forps for
more details.

• TIME is the CPU time that the process has used in minutes, seconds and hundredths
of a second. Note that many other UNIX systems, particularly System V, only show
this field to the nearest second.

• COMMAND is normally the command you entered, but don’t rely on this. In the next
section, you’ll see thatsendmail has changed itsCOMMAND field to tell you what it is
doing. You’ll notice that the command on the last line is theps that performs the
listing. Due to some complicated timing issue in the kernel, this process may or may
not appear in the listing.

What processes are running?
There are many more processes in the system than the list above shows. To show them
all, use thea option tops. To show daemons as well (see the next section for a definition
of daemon), use thex option. To show much more detail, use theu or l options. For
example:

$ ps waux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 12 95.7 0.0 0 12 ?? RL 1Jan70 1406:43.85 (idle: cpu0)
root 11 95.1 0.0 0 12 ?? RL 1Jan70 1406:44.64 (idle: cpu1)
root 1 0.0 0.0 708 84 ?? ILs 1Jan70 0:09.10 /sbin/init --
root 12 0.0 0.0 0 12 ?? WL 1Jan70 15:04.95 (swi1: net)
root 13 0.0 0.0 0 12 ?? WL 1Jan70 21:30.29 (swi6: tty:sio clock)
root 15 0.0 0.0 0 12 ?? DL 1Jan70 2:17.27 (random)
root 18 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (swi3: cambio)
root 20 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (irq11: ahc0 uhci0++)
root 21 0.0 0.0 0 12 ?? WL 1Jan70 39:00.32 (irq5: rl0)
root 22 0.0 0.0 0 12 ?? WL 1Jan70 7:12.92 (irq14: ata0)
root 23 0.0 0.0 0 12 ?? WL 1Jan70 0:47.99 (irq15: ata1)

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

150 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 150

root 24 0.0 0.0 0 12 ?? DL 1Jan70 0:00.08 (usb0)
root 25 0.0 0.0 0 12 ?? DL 1Jan70 0:00.00 (usbtask)
root 26 0.0 0.0 0 12 ?? DL 1Jan70 0:00.07 (usb1)
root 27 0.0 0.0 0 12 ?? DL 1Jan70 0:00.08 (usb2)
root 340 0.0 0.1 1124 280 ?? S 18Dec02 16:41.11 nfsd: server (nfsd)
root 375 0.0 0.0 1192 12 ?? Ss 18Dec02 0:01.70 /usr/sbin/lpd
daemon 408 0.0 0.0 1136 152 ?? Ss 18Dec02 0:11.41 /usr/sbin/rwhod
root 420 0.0 0.1 2648 308 ?? Ss 18Dec02 0:04.20 /usr/sbin/sshd
root 491 0.0 0.1 2432 368 ?? Ss 18Dec02 0:38.61 /usr/local/sbin/httpd
root 551 0.0 0.0 1336 12 ?? Ss 18Dec02 0:02.71 /usr/sbin/inetd -wW
root 562 0.0 0.0 1252 216 ?? Is 18Dec02 0:15.50 /usr/sbin/cron
root 572 0.0 0.0 1180 8 v2 IWs+ - 0:00.00 /usr/libexec/getty Pc
www 582 0.0 0.0 2432 8 ?? IW - 0:00.00 /usr/local/sbin/httpd
grog 608 0.0 0.1 1316 720 v0 I 18Dec02 0:00.04 -bash (bash)
root 2600 0.0 0.0 1180 8 v1 IWs+ - 0:00.00 /usr/libexec/getty Pc
root 33069 0.0 0.3 5352 1716 ?? Ss 29Dec02 0:01.30 xterm -name xterm
grog 33081 0.0 0.1 1328 752 p8 Is+ 29Dec02 0:00.09 /usr/local/bin/bash

This list is just an excerpt. Even on a freshly booted system, the real list of processes will
be much larger, about 50 processes.

We’v e seen a number of these fields already. The others are:

• USER is thereal user ID of the process, the user ID of the person who started it.

• %CPU is an approximate count of the proportion of CPU time that the process has
been using in the last few seconds. This is the column to examine if things suddenly
get slow.

• %MEM is an approximate indication of the amount of physical memory that the process
is using.

• VSZ (virtual size) is the amount of virtual memory that the process is using, measured
in kilobytes.

• RSS (resident segment size) is the amount of physical memory currently in use,
measured in kilobytes.

• STARTED is the time or date when the process was started.

In addition, a surprising number of processes don’t hav e a controlling terminal. They are
daemons, and we’ll look at them in the next section.

Daemons
A significant part of the work in a FreeBSD system is performed bydaemons. A daemon
is not just the BSD mascot described on page 20—it’s also a process that goes around in
the background and does routine work such as sending mail (sendmail), handling
incoming Internet connections (inetd), or starting jobs at particular times (cron).

To quote theOxford English Dictionary: Demon Also dæmon. ME [In form, and in sense I, a. L.
dæmon (med. L.demon)...] 1a. In ancient Greek mythology (=δα ίµων): A supernatural being of
a nature intermediate between that of gods and men, an inferior divinity, spirit, genius (including
the souls of deceased persons,esp deified heros). Often writtendæmon for distinction.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Daemons 151

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 151

You can recognize daemons in aps waux listing by the fact that they don’t hav e a
controlling terminal—instead you see the characters??. Each daemon has a man page
that describes what it does.

Normally, daemons are started when the system is booted and run until the system is
stopped. If you stop one by accident, you can usually restart them. One exception isinit,
which is responsible for starting other processes. If you kill it, you effectively kill the
system. Unlike traditional UNIX systems, FreeBSD does not allowinit to be killed.

cron
One of the more useful daemons iscron, named after Father Time.cron performs
functions at specific times. For example, the system runs the script/etc/periodic/daily
ev ery day at 2:00 am, the script/etc/periodic/weekly ev ery Saturday at 3:30 am, and the
script /etc/periodic/monthly on the first day of every month at 5:30 am.

To tell cron to perform a function at a particular time, you need a file called acrontab.
The system keeps the realcrontab where you can’t get at it, but you can keep a copy. It’s
a good idea to call itcrontab as well.

Let’s look at the format of the default systemcrontab, located in/etc/crontab:

/etc/crontab - root’s crontab for FreeBSD
#
$Id: crontab,v 1.10 1995/05/27 01:55:21 ache Exp $
From: Id: crontab,v 1.6 1993/05/31 02:03:57 cgd Exp
#
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
HOME=/var/log
#
#minute hour mday month wday who command
#
*/5 * * * * root /usr/libexec/atrun
#
rotate log files every hour, if necessary
#0 * * * * root /usr/bin/newsyslog
#
do daily/weekly/monthly maintenance
0 2 * * * root /etc/daily 2>&1
30 3 * * 6 root /etc/weekly 2>&1
30 5 1 * * root /etc/monthly 2>&1
#
time zone change adjustment for wall cmos clock,
See adjkerntz(8) for details.
1,31 0-4 * * * root /sbin/adjkerntz -a

As usual, lines starting with# are comments. The others have sev en fields. The first five
fields specify the minute, the hour, the day of the month, the month, and the day of the
week on which an action should be performed. The character* means ‘‘every.’’ Thus,0
2 * * * (for /etc/daily) means ‘‘0 minutes, 2 o’clock (on the 24 hour clock), every day
of the month, every month, every weekday.’’

Field number six is special: it only exists in/etc/crontab, not in privatecrontabs. It
specifies the user for whom the operation should be performed. When you write your
own crontab file, don’t use this field.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

152 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 152

The remaining fields define the operation to be performed.cron doesn’t read your shell
initialization files. In particular, this can mean that it won’t find programs you expect it to
find. It’s a good idea to put in explicitPATH definitions, or specify an absolute pathname
for the program, as is done in this example.cron mails the output to you, so you should
checkroot’s mail from time to time.

To install or list acrontab, use thecrontab program:

$ crontab crontab install a crontab
$ crontab -l list the contents of an installed crontab
DO NOT EDIT THIS FILE - edit the master and reinstall.
(crontab installed on Wed Jan 1 15:15:10 1997)
(Cron version -- $Id: crontab.c,v 1.7 1996/12/17 00:55:12 pst Exp $)
0 0 * * * /home/grog/Scripts/rotate-log

Processes in FreeBSD Release 5
Some of the processes in the example above are specific to FreeBSD Release 5:

• FreeBSD Release 5 has anidle process to use up the excess processor time and
perform certain activities needed when no process is active. This example machine
has two processors, so there are two of them:

root 12 95.7 0.0 0 12 ?? RL 1Jan70 1406:43.85 (idle: cpu0)
root 11 95.1 0.0 0 12 ?? RL 1Jan70 1406:44.64 (idle: cpu1)

• A number of the processes have names starting withirq orswi:

root 12 0.0 0.0 0 12 ?? WL 1Jan70 15:04.95 (swi1: net)
root 13 0.0 0.0 0 12 ?? WL 1Jan70 21:30.29 (swi6: tty:s
root 18 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (swi3: cambi
root 20 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (irq11: ahc0
root 21 0.0 0.0 0 12 ?? WL 1Jan70 39:00.32 (irq5: rl0)
root 22 0.0 0.0 0 12 ?? WL 1Jan70 7:12.92 (irq14: ata0)
root 23 0.0 0.0 0 12 ?? WL 1Jan70 0:47.99 (irq15: ata1)

These processes handle hardware interrupts (irq) or software interrupts (swi). The
text which follows gives an idea of which devices or software services they support.

top
Another tool for investigating system performance istop, which shows a number of
performance criteria, including the status of the processes are using the most resources.
Start it with the number of processes you want displayed. Figure 8-2 gives an example.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Daemons 153

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 153

$ top -S 10
last pid: 3992; load averages: 0.59, 0.17, 0.06 up 0+23:54:49 17:25:13
87 processes: 3 running, 73 sleeping, 8 waiting, 3 lock
CPU states: 10.2% user, 0.0% nice, 18.8% system, 1.7% interrupt, 69.4% idle
Mem: 43M Active, 36M Inact, 31M Wired, 7460K Cache, 22M Buf, 2996K Free
Swap: 512M Total, 512M Free

PID USER PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
12 root -16 0 0K 12K RUN 0 23.7H 55.32% 55.32% idle: cpu0
11 root -16 0 0K 12K CPU1 1 23.7H 54.49% 54.49% idle: cpu1

2854 grog 97 0 4940K 3932K *Giant 1 0:04 3.88% 3.86% xterm
20 root -64 -183 0K 12K WAIT 1 0:08 0.83% 0.83% irq14: ata0

2925 root 96 0 712K 608K select 1 0:01 0.15% 0.15% make
3193 grog 96 0 2220K 1304K CPU0 0 0:01 0.15% 0.15% top
3783 root 96 0 520K 416K select 1 0:00 0.10% 0.05% make
167 root 96 0 13876K 2112K select 0 1:02 0.00% 0.00% xcpustate
25 root -68 -187 0K 12K WAIT 0 0:28 0.00% 0.00% irq9: xl0
110 root 96 0 1528K 956K select 1 0:26 0.00% 0.00% ntpd

Figure 8-2: top display

By default, the display is updated every two seconds and contains a lot of information
about the system state:

• The first line gives information about the last PID allocated (you can use this to
follow the number of processes being created) and theload average, which gives
information about how many processes are waiting to be scheduled.

• The next line gives an overview of process statistics, and in what state they are. A
process waits for external events to complete; it waits on a lock if some other process
has a kernel resource which it wants.

• The third line shows the percentage of time used in user mode, in system (kernel)
mode and by interrupts.

• The fourth line shows memory usage.

• The fifth line shows swap statistics. When swapping activity occurs, it also appears
on this line.

• The remaining lines show the ten most active processes (because the parameter 10
was specified on the command line). The-S option tells top to include system
processes, such as the idle and the interrupt processes. The state can be:

• RUN, when the process is waiting for a processor to run on.

• CPU0 orCPU1, when the process is actively executing.

• *lock, wherelock is the name of a kernel lock. In this example, thexterm is
waiting on the lockGiant.

• A wait string, which indicates an event on which the process is waiting.

See the man pagetop(1) for more details.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

154 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 154

Stopping processes
Sometimes you may find that you want to stop a currently running process. There are a
number of ways to do this, but the easiest are:

• If the process is running on a terminal, and it’s accepting input, hitting the EOF key
(usuallyCtrl-D) will often do it.

• If EOF doesn’t do it, try the INTR key (usuallyCtrl-C).

• If the process is ignoring INTR, or if it is not associated with a terminal, use thekill
command. For example, to find who is using all the CPU time, useps and look at
the%CPU field:

ps waux | grep cron
root 105 97.3 1.1 236 340 ?? Is 9:11AM 137:14.29 cron

Here,cron is using 97% of the CPU time, and has accumulated over 2 hours of CPU
time since this morning. It’s obviously sick, and we should put it out of its misery.
To stop it, enter:

kill 105

This command sends a signal calledSIGTERM (terminate) to the process. This signal
gives the process time to tidy up before exiting, so you should always try to use it
first. The 105 iscron’s PID, which we got from theps command.

If the process doesn’t go away within a few seconds, it’s probably ignoringSIGTERM.
In this case, you can use the ultimate weapon:

kill -9 105

The-9 is the number ofSIGKILL, a signal that cannot be caught or ignored. You can
find a list of the signals and their numeric values in/usr/include/sys/signal.h, which is
part of the software development package.

FreeBSD also has a script calledkillall. As the name implies, it kills a group of
processes, by name. If you find that you have, say, a whole lot of runawaysendmail
processes, you might save the day by writing:

killall sendmail

As we’ll see elsewhere, you can also usekillall to send a signal to a single process when
you know that only one is present. For example, to causeinetd to re-read its
configuration file, you could write:

killall -1 inetd

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Stopping processes 155

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 155

Timekeeping
FreeBSD is a networking system, so keeping the correct time is more important than on a
standalone system. Apart from the obvious problem of keeping the same time as other
local systems, it’s also important to keep time with systems in other time zones.

Internally, FreeBSD keeps the time as the number of seconds since theepoch, the
beginning of recorded history: 00:00:00 UTC, 1 January 1970.UTC is the international
base time zone, and meansUniversal Coordinated Time, despite the initials. It
corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter. It would be inconvenient to keep all dates in UTC, so the
system understands the concept of time zones. For example, in Walnut Creek, CA, the
time zone in the winter is calledPST (Pacific Standard Time), and in the summer it is
PDT (Pacific Daylight Time). FreeBSD comes with a set of time zone description files in
the directory hierarchy/usr/share/zoneinfo. We’ve already seen on page 95 that when
you install the system, it stores information about the local time zone in the file
/etc/localtime. If you move time zones, you should change the time zone, not the time,
either by running thetzsetup program, or simply by copying the file. For example, if you
travel with a laptop from Adelaide, South Australia, to San Francisco CA, you would do:

cp /usr/share/zoneinfo/America/Los_Angeles /etc/localtime

When you get home again, you would do:

cp /usr/share/zoneinfo/Australia/Adelaide /etc/localtime

At no time do you need to change the date or time directly.

Why Los_Angeles and notSan_Francisco? The developers of the time zone package
chose the largest city in the time zone. You need to have a certain understanding of the
time zones to choose the correct one.

The TZ environment variable
An alternate means of describing the time zone is to set the environment variableTZ,
which we looked at on page 128. You might use this form if you’re connected to a
remote system in a different time zone, or maybe just to find the time at some other place.
For example, in Adelaide, SA I might find:

$ date
Sun Apr 14 13:31:15 CST 2002
$ TZ=America/Los_Angeles date
Sat Apr 13 21:01:15 PDT 2002

Set theTZ variable to the name of the time zone info file in the/usr/share/zoneinfo
hierarchy. For example, the value ofTZ for Berlin, Germany isEurope/Berlin in
FreeBSD.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

156 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 156

This is not the same as the usage of theTZ variable in UNIX System V. System V
doesn’t hav e the time zone definition files in/usr/share/zoneinfo, so theTZ variable tells
it information about the time zone. If you were using System V in Berlin, you would set
yourTZ variable toMEZ1MSZ2, indicating time zone names and offsets from UTC.

Keeping the correct time
If you’re connected to the Internet on a reasonably regular basis, there are a number of
programs which can help you synchronize your time via thentp (Network Time Protocol)
service.

A number of systems around the world supply time information via thentp service. Look
at http://www.eecis.udel.edu/˜mills/ntp/servers.html to find one near you.

Your choice of program depends on the nature of your connection to the Internet. If
you’re connected full time, you’ll probably preferntpd, which keeps the system
synchronized. Otherwise you can usentpdate, which you can run as you feel like it.

ntpd

ntpd performs periodic queries to keep the system synchronized with a time server.
There are many ways to run it—see the man pagentpd(8). In most cases, you can set up
one system on the network to connect to an external time reference, and the other systems
on the same Ethernet can get the time information from the first system.

To get the time from an external source and broadcast it to the other systems on the
network, create a file/etc/ntp.conf with a content like this:

server 227.21.37.18 this address is invalid; check what’s near you
driftfile /etc/ntp.drift
broadcast 223.147.37.255

The first line defines the server. The value in this example is invalid , so don’t try to use
it. It’s important to get one near you: network delays can significantly impair the
accuracy of the results.ntpd uses the file/etc/ntp.drift to record information about the
(in)accuracy of the local system’s clock. You only need the final line if you have other
systems on the network which wait for a broadcast message. It specifies the broadcast
address for the network and also tellsntpd to broadcast on this address.

After setting up this file, you just need to startntpd:

ntpd

To ensure thatntpd gets started every time you reboot, make sure that you have the
following lines in /etc/rc.conf :

ntpd_enable="YES" # Run ntpd Network Time Protocol (or NO).

The comment on the first line is misleading: the value ofntpd_enable must beYES.
You don’t need any flags. You put exactly the same text in the/etc/rc.conf on the other
machines, and simply omit the file/etc/ntp.conf. This causesntpd on these machines to

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Timekeeping 157

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 157

monitor broadcast messages.

In previous versions of FreeBSD,ntpd was calledxntpd, so you may find things like
xntpd_enable in your /etc/rc.conf. If you do, you’ll have to change the name.

ntpdate

If you connect to the Internet infrequently,ntpd may become discouraged and not keep
good time. In this case, it’s better to usentpdate. Simply run it when you want to set the
time:

ntpdate server

You can’t use bothntpdate andntpd at the same time: they both use the same port.ntpd
takes quite some time to synchronize, and if the time is wildly out, it won’t even try, so
it’s often a good idea to runntpdate on startup and then startntpd manually.

Log files
Various components of FreeBSD report problems or items of interest as they happen. For
example, there can always be problems with mail delivery, so a mail server should keep
some kind of record of what it has been doing. If hardware problems occur, the kernel
should report them. If somebody tries to break into the machine, the components affected
should report the fact.

FreeBSD has a generalized system forlogging such events. Thesyslogd daemon takes
messages from multiple sources and writes them to multiple destinations, usually log files
in the directory /var/log. You can change this behaviour by modifying the file
/etc/syslog.conf. See syslog.conf(5) for further details. In addition tosyslogd, other
programs write directly to files in this directory. The following files are of interest:

• XFree86.0.log contains the log file for the last (or current) X session started on
display 0. This is a prime source of information if you run into problems with X.

• auth.log contains information about user authentication. For example, you might
see:

Dec 10 10:55:11 bumble su: grog to root on /dev/ttyp0
Dec 10 12:00:19 bumble sshd[126]: Server listening on :: port 22.
Dec 10 12:00:19 bumble sshd[126]: Server listening on 0.0.0.0 port 22.
Dec 10 12:06:52 bumble sshd[167]: Accepted publickey for grog from 223.147.37.80
port 49564 ssh2
Dec 10 12:06:58 bumble su: BAD SU grog to root on /dev/ttyp0

The first line is a successfulsu invocation; the last line is an unsuccessful one
(because the password was mistyped). The messages at 12:00:19 are fromsshd
startup, and the message at 12:06:52 is a successful remote login withssh.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

158 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 158

• cron is a log file forcron. It’s relatively uninteresting:

Jan 5 16:00:00 bumble newsyslog[2668]: logfile turned over
Jan 5 16:05:00 bumble /usr/sbin/cron[2677]: (root) CMD (/usr/libexec/atrun)
Jan 5 16:05:00 bumble /usr/sbin/cron[2678]: (root) CMD (/usr/libexec/atrun)
Jan 5 16:10:00 bumble /usr/sbin/cron[2683]: (root) CMD (/usr/libexec/atrun)

If you have problems withcron, that could change rapidly.

• dmesg.today and dmesg.yesterday are created by acron job at 2 am every day. The
dmesg message buffer wraps around, overwriting older entries, so they can be of use.

• lastlog is a binary file recording last login information. You don’t normally access it
directly.

• maillog contains information about mail delivery.

• messages is the main log file.

• The filesmount.today and mount.yesterday show the currently mounted file systems
in the format needed for/etc/fstab.

• The file ppp.log contains information on PPP connections. We look at it on page
353.

• The files setuid.today and setuid.yesterday contain a list ofsetuid files. The daily
security check compares them and sends a mail message if there are any differences.

• The file vinum_history contains information aboutvinum activity.

• The file wtmp contains information about logins to the system. Likelastlog, it’s in
binary form. Seeutmp(5) for the format of bothlastlog andwtmp.

A number of the more important log files are kept through several cycles. As the example
above shows,cron runs thenewsyslog command every hour.newsyslog checks the size
of the files, and if they are larger than a certain size, it renames the old ones by giving
them a numerical extension one higher than the current one, then renames the base file
with an extension.0 and compresses it. The result looks like this:

-rw-r--r-- 1 root wheel 31773 Jan 5 13:01 messages
-rw-r--r-- 1 root wheel 8014 Jan 2 01:00 messages.0.bz2
-rw-r--r-- 1 root wheel 10087 Dec 15 14:00 messages.1.bz2
-rw-r--r-- 1 root wheel 9940 Dec 3 17:00 messages.2.bz2
-rw-r--r-- 1 root wheel 9886 Nov 16 11:00 messages.3.bz2
-rw-r--r-- 1 root wheel 9106 Nov 5 18:00 messages.4.bz2
-rw-r--r-- 1 root wheel 9545 Oct 15 17:00 messages.5.bz2

newsyslog has a configuration file/etc/newsyslog.conf, which we discuss on page 572.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Log files 159

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 159

Multiple processor support
FreeBSD Release 5 can support most current Intel and AMD multiprocessor mother-
boards with the ia32 architecture. It also supports some Alpha, SPARC64 and Intel ia64
motherboards. Documentation on SMP support is currently rather scanty, but you can find
some information athttp://www.freebsd.org/˜fsmp/SMP/SMP.html.

TheGENERIC kernel does not support SMP, so you must build a new kernel before you
can use more than one processor. The configuration file/usr/src/sys/i386/conf/GENERIC
contains the following commented-out entries:

To make an SMP kernel, the next two are needed
#options SMP # Symmetric MultiProcessor Kernel
#options APIC_IO # Symmetric (APIC) I/O

For other platforms, you don’t needAPIC_IO. See Chapter 33 for information on how to
build a new kernel.

PC Card devices
As we have already seen, PC Card devices are special because they can be hot-plugged.
They are also intended to be recognized automatically. Starting with Release 5, FreeBSD
recognizes card insertion and removal in the kernel and invokes the appropriate driver to
handle the event. When you insert a card you will see something like this on the system
console:

ata2 at port 0x140-0x14f irq 11 function 0 config 1 on pccard0
ad4: 7MB <LEXAR ATA FLASH> [251/2/32] at ata2-master BIOSPIO

This is a compact flash memory card, which the system sees as an ATA disk. The kernel
has created the necessary structures, but it can’t know how to mount the device, for
example. We’ll look at what we can do about this in the next section.

devd: The device daemon
The device daemon,devd, provides a way to run userland programs when certain kernel
ev ents happen. It is intended to handle userland configuration of PC Card devices such as
Ethernet cards, which it can do automatically. We’ll look at this automatic usage on page
304.

devd reads the kernel event information from the device/dev/devctl and processes it
according to rules specified in the configuration file/etc/devd.conf, which is installed
with the system. If you want to use it for other devices, you must modify/etc/devd.conf.
This file contains a number of sections, referred to asstatements in the man page:

• The options statement describes file paths and a number of regular expressions
(patterns) to look for in the messages it reads from/dev/devctl.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

160 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 160

• attach statements specify what action to perform when a device is attached. For
example:

attach 0 {
device-name "$scsi-controller-regex";
action "camcontrol rescan all";

};

Thedevice-name entry uses the regular expression$scsi-controller-regex to
recognize the name of a SCSI controller in the attach message. Theaction entry
then specifies what action to take when such a device is attached to the system. In
this case, it runs thecamcontrol program to rescan the SCSI buses and recognize any
new devices that have been added.

Multiple attach statements can match a specific event, but only one will be executed.
The order in which they are checked is specified by apriority, a numerical value after
the keywordaction. The statements are checked in order of highest to lowest
numerical priority.

• detach statements have the same syntax asattach statements. As the name suggests,
they are executed when a device is detached.

It’s not always possible or necessary to perform any actions when a device is
removed. In the case of SCSI cards, there is nodetach statement. We’ll look at this
issue in more detail below.

• Finally, if the kernel was unable to locate a driver for the card, it generates ano match
ev ent, which is handled by thenomatch statement.

So what doesdevd do when we insert the compact flash card? By default, nothing. The
AT A driver recognizes and configures the card. It would be nice to getdevd to mount it
as well. That’s relatively simple:

• Ensure that you have an entry for the device in/etc/fstab. Digital cameras create a
single MS-DOS file system on flash cards. An appropriate entry in/etc/fstab for this
device might be:

/dev/ad4s1 /camera msdos rw,noauto 0 0

This is a removable device, so you should use thenoauto keyword to stop the system
trying to mount it on system startup.

• In theoptions section of/etc/devd.conf, add an expression to recognize the names of
AT A controllers:

set ata-controller-regex
"ata[0-9]+";

• Add anattach section for the device:

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

PC Card devices 161

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 161

attach 0 {
device-name "$ata-controller-regex";
action "mount /camera";

};

• Restartdevd:

killall devd
devd

After this, the file system will be automatically mounted when you insert the card.

Removing PC Card devices
The next thing we’d like to do is to unmount the file system when you remove the flash
card. Unfortunately, that isn’t possible. Unmounting can involve data transfer, so you
have to do it before you remove the card. If you forget, and remove the card without
unmounting, the system may panic next time you try to access the card.

After unmounting, you can remove the card. On the console you’ll see something like:

ad4: removed from configuration
ad4: no status, reselecting device
ad4: timeout sending command=e7 s=ff e=04
ad4: flushing cache on detach failed
ata2: detached

Alternate PC Card code
The PC Card implementation described here, calledNEWCARD, is new in FreeBSD
Release 5. At the time of writing, the older implementation, calledOLDCARD, is still
included in the system. It’s possible that you might have an older card that is supported
by OLDCARD but not by NEWCARD. In that case, you will need to build a kernel with
OLDCARD support. Check the NOTES files in /usr/src/sys/conf and
/usr/src/sys/arch/conf, wherearch is the architecture of your system, and the man pages
pccardd andpccard.conf.

Configuring PC Card devices at startup
A number of entries in/etc/rc.conf relate to the use of PC Card devices, but nearly all of
them are for OLDCARD. You only need one for NEWCARD:

devd_enable="YES"

This startsdevd at system startup.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

162 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 162

Emulating other systems
A large number of operating systems run on Intel hardware, and there is a lot of software
that is available for these other operating systems, but not for FreeBSD.

Emulators and simulators
There are a number of ways to execute software written for a different platform. The
most popular are:

• Simulation is a process where a program executes the functions that are normally
performed by the native instruction set of another machine. They simulate the low-
level instructions of the target machine, so simulators don’t hav e to run on the same
kind of machine as the code that they execute. A good example is the port
emulators/p11, which simulates a PDP-11 minicomputer, the machine for which most
early versions of UNIX were written.

Simulators run much more slowly than the native instruction set: for each simulated
instruction, the simulator may execute hundreds of machine instructions. Amusingly,
on most modern machines, thep11 emulator still runs faster than the original
PDP-11: modern machines are over 1,000 times faster than the PDP-11.

• In general,emulators execute the program instructions directly and only simulate the
operating system environment. As a result, they hav e to run on the same kind of
hardware, but they’re not noticeably slower than the original. If there is any
difference in performance, it’s because of differences between the host operating
system and the emulated operating system.

• Another use for the termemulator is where the hardware understands a different
instruction set than the native one. Obviously this is not the kind of emulator we’re
talking about here.

FreeBSD can emulate many other systems to a point where applications written for these
systems will run under FreeBSD. Most of the emulators are in the Ports Collection in the
directory /usr/ports/emulators.

In a number of cases, the emulation support is in an experimental stage. Here’s an
overview:

• FreeBSD will run most BSD/OS programs with no problems. You don’t need an
emulator.

• FreeBSD will also run most NetBSD and OpenBSD executables, though not many
people do this: it’s safer to recompile them under FreeBSD.

• FreeBSD runs Linux executables with the aid of thelinux kld (loadable kernel
module). We’ll look at how to use it in the next section.

• FreeBSD can run SCO COFF executables with the aid of theibcs2 kld. This support
is a little patchy: although the executables will run, you may run into problems
caused by differences in the directory structure between SCO and FreeBSD. We’ll

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Emulating other systems 163

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 163

look at it on page 164.

• A Microsoft Windows emulator is available. We’ll look at it on page 165.

Emulating Linux
Linux is a UNIX-like operating system that in many ways is very similar to FreeBSD.
We discussed it on page 10. Although it looks very UNIX-like, many of the internal
kernel interfaces are different from those of FreeBSD or other UNIX-based systems. The
Linux compatibility package handles these differences, and most Linux software will run
on FreeBSD. Most of the exceptions use specific drivers that don’t run on FreeBSD,
though there is a considerable effort to minimize even this category.

To install the Linux emulator, you must:

• Install the compatibility libraries. These are in the port/usr/ports/emulators/lin-
ux_base.

• Run the Linux emulator kld,linux.

Running the Linux emulator
Normally you load the Linux emulator when you boot the system. Put the following line
in your /etc/rc.conf :

linux_enable="YES"

If you don’t want to do this for some reason, you can start it from the command line:

kldload linux

You don’t interact directly with the emulator module: it’s just there to supply kernel
functionality, so you get a new prompt immediately when you start it.

linux is a kld, so it doesn’t show up in aps listing. To check whether it is loaded, use
kldstat:

$ kldstat
Id Refs Address Size Name
1 5 0xc0100000 1d08b0 kernel
2 2 0xc120d000 a000 ibcs2.ko
3 1 0xc121b000 3000 ibcs2_coff.ko
5 1 0xc1771000 e000 linux.ko

This listing shows that the SCO UNIX emulation (ibcs2) has also been loaded.

The Linux emulator and many Linux programs are located in the directory hierarchy
/usr/compat/linux. You won’t normally need to access them directly, but if you get a
Linux program that includes libraries destined for/lib, you will need to manually place
them in /usr/compat/linux/lib. Be very careful not to replace any files in the/usr/lib

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

164 Chapter 8: Taking control

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 164

hierarchy with Linux libraries; this would make it impossible to run FreeBSD programs
that depend on them, and it’s frequently very difficult to recover from such problems.
Note that FreeBSD does not have a directory/lib, so the danger is relatively minor.

Linux procfs
Linux systems have a file system calledprocfs, or Process File System, which contains
information used by many programs. FreeBSD also has aprocfs, but it is completely
different. To be able to run Linux programs which refer toprocfs, place the following
entry in your/etc/fstab file:

linproc /compat/linux/proc linprocfs rw 0 0

Problems executing Linux binaries
One of the problems with the ELF format used by older Linux binaries is that they may
contain no information to identify them as Linux binaries. They might equally well be
BSD/OS or UnixWare binaries. That’s normally not a problem, unless there are library
conflicts: the system can’t decide which shared library to use. If you have this kind of
binary, you mustbrand the executable using the programbrandelf. For example, to
brand the StarOffice programswriter3, you would enter:

brandelf -t Linux /usr/local/StarOffice-3.1/linux-x86/bin/swriter3

This example deliberately shows a very old version of StarOffice: it’s not clear that there
are any modern binaries that cause such problems.

Emulating SCO UNIX
SCO UNIX , also known asSCO OpenDesktop andSCO Open Server, is based on UNIX
System V.3.2. This particular version of UNIX was current in the late 1980s. It uses an
obsolete binary format calledCOFF (Common Object File Format).

Like Linux support, SCO support for FreeBSD is supplied as a loadable kernel module.
It’s not calledsco, though: a number of older System V.3.2 systems, including Interactive
UNIX, also support theibcs21 standard. As a result, the kld is calledibcs2.

Run ibcs2 support like Linux support: start it manually, or modify/etc/rc.conf to start it
automatically at bootup:

ibcs2_enable="YES" # Ibcs2 (SCO) emulation loaded at startup (or NO).

Alternatively, load the kld:

1. ibcs2 stands forIntel Binary Compatibility System 2.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

Emulating SCO UNIX 165

19 June 2003, 14:24:54 The Complete FreeBSD (unixadmin.mm), page 165

kldload ibcs2

One problem with SCO emulation is the SCO shared libraries. These are required to
execute many SCO executables, and they’re not supplied with the emulator. Theyare
supplied with SCO’s operating systems. Check the SCO license to determine whether
you are allowed to use them on FreeBSD. You may also be eligible for a free SCO
license—see the SCO web site for further details.

Emulating Microsoft Windows
Thewine project has been working for some time to provide an emulation of Microsoft’s
Windows range of execution environments. It’s changing continually, so there’s little
point describing it here. You can find up-to-date information at
http://www.winehq.com/about/, and you can install it from the portemulators/wine. Be
prepared for a fair amount of work.

Accessing Microsoft files
Often you’re not as interested in running Microsoft applications as decoding their
proprietary formats. For example, you might get a mail message with an attachment
described only as

[-- Attachment #2: FreeBSD.doc --]
[-- Type: application/octet-stream, Encoding: x-unknown, Size: 15K --]

[-- application/octet-stream is unsupported (use ’v’ to view this part) --]

This attachment has an unspecific MIME type,1 but you might guess that it is Microsoft
Word format because the file name ends in.doc. That doesn’t make it any more legible.
To read it, you need something that understands the format. A good choice is
OpenOffice.org, a clone of Microsoft’s ‘‘Office’’ product. Install from the Ports
Collection (/usr/ports/editors/openoffice).

OpenOffice.org is not a good example of the UNIX way. It breaks a number of
conventions, and in general it’s a lot more difficult to use than normal FreeBSD tools. Its
only real advantage is that you can process Microsoft document formats.

1. See Chapter 26,Electronic mail: clients, page 489, for more information about MIME.

unixadmin.mm,v v4.13 (2003/04/02 06:50:29)

